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Spatial oligopolies with cooperative distribution

Maria Sandsmark�

Møreforsking Molde/Molde Research Institute, Norway

Abstract. The main objects here are Nash equilibria in spatial Cournot
oligopolies when pro�ts depend on coordinated distribution. Production is non-
cooperative, but the subsequent transportation must be performed jointly to
minimize costs. Cournot-Nash equilibria for this two-stage game with partial
coalitional strategies are determined by means of a mathematical-based algo-
rithm. A numerical illustration is presented.

Key words: spatial oligopolies; core allocation; Nash equilibrium; algo-
rithms
JEL classi�cation: C61, C71, C72, L13

1. Introduction
This paper considers an oligopolistic industry comprising geographically separated
�rms and markets. Those �rms interact at two stages. First, they produce, possibly
at many locations, commodities to be delivered at several shared markets. Second, if
possible, they agree on how to best distribute the goods to satisfy consumers�demand.
More speci�cally, ex ante �rms decide, independently and without collaboration, how
much of various commodities to produce and supply at di¤erent markets. When
making these decisions, they know that all goods will �nally be transported from
production sites to customers in an e¢ cient manner.
An increasing number of deregulated network industries � including electric-

ity and natural gas supply � are examples where competition may occur in this
way: Firms often have market power in production and sales �they produce non-
cooperatively �whereas product distribution is regulated to enhance e¢ ciency or
mitigate monopoly e¤ects, see e.g., Newbery (1999) for an overview of competitive is-
sues regarding network industries. For practical purposes the (regulated) coordinated
activities may either be subject to contracts or outsourced to competitive agents, of-
fering appropriately specialized services.

�Molde Research Institute, Britveien 4, N-6411 Molde, Norway. Tlf: +47 71 21 42 84, Fax:
+47 71 21 42 99, email: maria.sandsmark@himolde.no. I thank Sjur D. Flåm for help on this
paper. Financial support from NFR project 111039/410 and NorFA project 9730220-O is gratefully
acknowledged.
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The obvious questions is then: Will the overall two-stage game admit an equilib-
rium? A¢ rmative and constructive answers are already given in a recent study by
Flåm and Jourani (2003), who de�ne and characterize equilibria in games of this kind.
Methods for determining an equilibrium solution in practice are, however, lacking.
The purpose of the present paper is, therefore, to present a new characterization of
equilibrium of the spatial oligopoly game featuring both non-cooperative and cooper-
ative strategies and, moreover, to provide algorithms for determining an equilibrium
solution. In doing so, I extend the mathematical programming approach of Murphy,
Sherali and Soyster (1982) to a spatial and partial coalitional context.
The two-stage game outlined above partly belongs to regional science. The study

of spatial competition was initiated by Samuelson (1952). Harker (1986) reviews
the early literature, formulates equilibria by variational inequalities, and brings out
algorithms that solve the latter; see also Nagurney (1988) and Miller, Tobin and
Friesz (1991). In all these studies, however, competition is purely non-cooperative,
while insisting on joint distribution, as in the present paper, requires adoption of
methods from cooperative game theory.
Whether coordinated transportation is voluntary or imposed by the authorities,

it had better re�ect e¤ort to minimize cost. The joint transportation problem will,
therefore, be formalized here as a cooperative game in which the cost allocation con-
stitutes a core solution (Gillies 1953). Each �rm reasonably anticipates, during the
production phase, that the said allocation will indeed belong to the core. More specif-
ically, the second-stage coalitional game �ts the form of so-called production games
(Owen 1975), which belong to the large family of �ow games; see Kalai and Zemel
(1982a&b) and Dubey and Shapley (1984). Moreover, Owen (1975) constructively
�nds a core allocation using any optimal solution of the dual linear program associ-
ated to the grand coalition. (For generalizations and extensions of production games
see e.g. Granot 1986, Sandsmark 1999 and Evstigneev and Flåm 2001). His recipe
perfectly �ts our setting.
The paper is organized as follows. Section 2 presents the two-stage model, in line

with the regional oligopoly model of Flåm and Jourani (2003). Reviewed in that
section are the basic concepts from cooperative game theory. In Section 3 the overall
Cournot-Nash equilibrium is established and characterized. Two related algorithms
for determining the equilibrium solution are presented in Section 4, along with a
numerical illustration. Section 5 concludes.

2. The two-stage model
Throughout there is a �xed, �nite set I of �rms with production sites located at one
or more origins o 2 O. (It is common, e.g., for electricity companies � both small and
large � to own power generating units at several nodes of a transmission network.)
A �rm does not, however, need to have a factory at each origin o. All �rms produce
a homogenous good sold to customers distributed at various destinations d 2 D. By
assumption the sets O, D are �nite and disjoint. The chief economic activities of the
�rms take place over two stages: �rst comes production, second is transportation.
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These are discussed next in that order.

2.1. First-stage non-cooperative production. Firm i 2 I �rst decides on a
production plan qodi 2 RO[D+ , where qio :=

P
d2D q

od
i is the amount to be produced at

origin o and qid :=
P

o2O q
od
i is the amount to be sold to consumers at destination d;

subject, of course, to the balance conditionX
d2D

qid =
X
o2O

qio:

Let Qd :=
P

i2I qid denote the total supply at destination d: Demand there is embod-
ied in a non-increasing, di¤erentiable inverse curve Pd(Qd) that states the unit price
at which local consumers will purchase the amount Qd. I posit that gross revenue
qid 7! Pd(Qd)Qd be concave for each d:
Further, production cost fio(qio) of �rm i at origin o is taken to be convex. It

is tacitly understood that fio(qio) = +1 if qio < 0 or if qio exceeds some speci�ed
capacity. Firm i�s payo¤ �i(q) 2 R[f�1g from sales is then given by

�i(q) = �i(qi; q�i) :=
X
d2D

Pd (Qd) qid �
X
o2O

fio(qio): (1)

It depends on own choice qi := (qio; qid)o2O;d2D and the output pro�le q�i which is
shorthand for the choices qj := (qjo; qjd)o2O;d2D; j 2 Ini; made by i�s rivals.
The key objects here are equilibrium outcomes. Before turning to those we must

describe

2.2. Second-stage cooperative distribution. For �rms to enjoy sale proceeds,
the goods produced must be shipped to consumers. Assume all �rms incur transporta-
tion cost cod per unit shipped from production site o to destination d: The unit cost
ciod might very well vary across �rms. For notational simplicity we shall stick to the
uniform case though. Fixed cost are ignored. Transportation costs are thus propor-
tional to the amount shipped. Further, I assume that the transportation cost matrix
does not allow for the transportation paradox, c.f. Dejneko, Klinz and Woegniger
(2003).
Let xod denote the amount of goods shipped from origin o to destination d. Then

the second-stage problem of �rm i would, in autarky, amount to �nding a distribution
pattern x 2 RO�D+ that minimizes its transportation costs. This is done by solving

minimize
P

o2O;d2D codxod
subject to

P
d2D xod � qio; for all o;P
o2O xod � qid; for all d;

and xod � 0; for all o; d:

9>>=>>; (2)

The �rst inequality of (2) implies that no �rm can ship more goods from a production
site o than what it makes available there; the second equation tells that the total
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amount of goods it ships to destination d must meet the obligation (commitment) to
serve there. Denote the minimal cost in (2) by c(qi):
Since the products are homogeneous, customers are indi¤erent as to the origins of

goods. As a result there are potential e¢ ciency gains to be had from aggregating indi-
vidual transportation tasks. Upon doing so, some �rms can supply nearby customers
on behalf of more remote �rms. For the argument suppose coalition S � I of �rms
were to coordinate their transport to customers. After pooling their supply-demand
vectors to have aggregates

qSo :=
X
i2S
qio and qSd :=

X
i2S
qid;

they could �nd the distribution pattern x 2 RO�D+ that

minimize
P

o2O;d2D codxod
subject to

P
d2D xod � qSo; for all o;P
o2O xod � qSd; for all d;

and xod � 0; for all o; d:

9>>=>>; (3)

Let c(qS) denote the minimal cost in (3). Our concern is whether the overall minimal
cost c(qI) can be achieved and fairly divided. For that issue consider the cooperative
transferable utility game with characteristic function S 7! c(qS). This game (I; c) has
orthogonal coalitions, meaning that members of S can achieve cost c(qS) regardless
of what players outside S do. That is, the only threat against S by a player i 2 InS,
or any coalition of such players, is the boycott (see e.g. Shubik, 1982). Further, a
reasonable allocation u = (ui)i2I of total costs c(qI) should lie in the core.

De�nition 1. (Core) A cost allocation u = (ui)i2I is an element in the core of the
cooperative game (I; c) ifX

i2S
ui � c(qS); for all S � I; and

X
i2I
ui = c(qI):

The inequalities imply coalitional stability: no single or group of players can do
better by themselves. The equation accounts for Pareto e¢ ciency. Subadditivity is
necessary for non-emptyness of the core:

c(qS) + c(qS0) � c(qS + qS0) for disjoint coalitions S; S
0 � I:

This condition evidently holds in our case. Moreover, the cost sharing game is bal-
anced, which su¢ ces for non-emptiness of the core, c.f. Bondareva (1962) and Shapley
(1967). From the analysis of production games in Owen (1975) we get forthwith

Theorem 1. (Non-empty core of second-stage transportation game) Assume that for
any society-wide pro�le q = (qi)i2I decided upon during the �rst stage, the subsequent
linear program (3) is feasible and has a �nite optimal value for S = I. Then (3) de�nes
a cooperative transportation game which is totally balanced. �
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Most important, Owen (1975) constructively displayed a core allocation in terms
of solutions associated with the dual to program (3) when S = I. Of course, to make
that result applicable here, we must require that the optimal value c(qI) be �nite
for all strategy pro�les q = (qi)i2I that might come into consideration. Then core
elements are easily found. To wit, let � := (�d; �o)d2D;o2O be any optimal solution to
the dual transportation problem:

maximize
P

d2D �dqId �
P

o2O �oqIo
subject to �d � �o � cod for all o; d; � � 0:

�
Then we have

c(qI) =
X
d2D

�dqId �
X
o2O

�oqIo and (4)

c(qS) �
X
d2D

�dqSd �
X
o2O

�oqSo; for any S: (5)

Consequently, distributing total costs c(qI) by the rule

ui :=
X
d2D

�dqid �
X
o2O

�oqio; for all i 2 I;

we have, for any S; X
i2S
ui =

X
i2S

 X
d2D

�dqid �
X
o2O

�oqio

!
yielding by (4) and (5), respectively,X

i2I
ui = c(qI) and

X
i2S
ui � c(qS)

Thus the resulting allocation u = (ui)i2I belongs to the core of (3). The relationship
between the core of games generated from linear programming problems and the set of
dual optimal solutions, is further studied in Samet and Zemel (1984). An axiomatic
characterization of the set of solutions derived in this manner is presented in Van
Gellenkom et al. (2000).
To sum up, pooling supply-demand vectors qi = (qio; qid)o2O;d2D and solving (3)

for S = I; yields an optimal distribution pattern x�: By implementing this solution,
�rms incur joint minimum transportation cost c(qI), and �rm i�s second-stage share
of the joint transportation cost is de�ned as

ui(q) :=
X
d2D

�dqid �
X
o2O

�oqio (6)

When costs are shared as suggested above, each �rm pays in accordance with the
transportation task it brings to the community evaluated by the optimal Lagrangian
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multipliers. For convenience and in anticipation of the subsequent analysis, I intro-
duce the set

�(q) := fall � which are dually optimal in (3) for S = Ig :

Proposition 1. The function q ! u(q) :=
P

i2I ui(qi) = c(qI) is convex and @u(q)=@qi =
@ui(qi)=@qi = �(q): Moreover, the correspondence q ! �(q) is monotone.

Proof. The function

(x; q) 2 RO�D � RO[D ! C(x; q) :=

8>><>>:
P

o;d codxod if

8<:
P

d xod � qo;P
o xod � qd;
xod � 0; 8o; d

+1 otherwise

is convex, hence so is c(q) := infxC(x; q): By duality we have

c(q) = sup
� P

d �dqd �
P

o �oqo : �o; �d 2 R+ , �d � �o � cod;8o; d
	

and therefore,
@c(q) = �(q);

where @c(q) denotes the generalized subdi¤erential of convex analysis (Rockafellar,
1970). Any such subdi¤erential is monotone. Since

c(qI) := inf

(X
i2I
c(qi) :

X
i2I
qi = qI

)

is a so-called inf-convolution, it follows that @c(qI) = @c(qi) for all i: �

3. Equilibrium for the two-stage game

Assembling the two stages, let

�i(q) := �i(q)� ui(q); (7)

denote �rm i�s overall pro�t. It seeks to maximize �i(q) with respect to own choice qi
while anticipating q�i: The �rst-stage pro�t �i(q), that is revenues from sales minus
production costs, was de�ned in (1), and the individual share of second-stage joint
transportation cost ui(q) was de�ned in (6). We can now establish an equilibrium for
the spatial two-stage oligopoly game.

De�nition 2. (Equilibrium) A strategy pro�le �q = (�qi)i2I � 0 constitutes a Cournot-
Nash equilibrium with partial coalitional strategies if each �qi is an optimal solution
to the problem

maximize
qi�0

�i(�; �q�i); for all i 2 I: (8)
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Recall that by assumption the individual objective (7) is concave in qi and jointly
continuous in the pro�le q: Therefore existence of equilibrium is not di¢ cult to ensure:

Theorem 2. (Existence of equilibrium, Flåm and Jourani 2003) Suppose that each
qi belongs to a nonempty compact convex set Qi � RO�D+ : Then there exists at least
one Nash equilibrium. �

Consider now the following characterization of equilibrium.

Theorem 3. (Characterization of equilibrium) Assume the industry revenue curve
Pd(Qd)Qd is concave for Qd � 0: Then a strategy pro�le �q = (�qi)i2I � 0 is a Cournot-
Nash equilibrium if and only if there exists � 2 �(�q) such that

Pd( �Qd) + P
0
d(
�Qd)�qid � �d � f 0io(�qio) + �o � 0 for all o; d; for each i

�qi
�
Pd( �Qd) + P

0
d(
�Qd)�qid � �d � f 0io(�qio) + �o

�
= 0 for all o; d, for each i, whereP

i �qid = �Qd; for all d
�qi � 0 for all i:

Proof. From Theorem 1 we know that there exists a feasible vector of dual opti-
mal values � = (�o; �d)o2O;d2D associated with individual share of joint transportation
costs (6) for any choice q = (qi)i2I : Further, given Proposition 1 above and Lemma 1
of Murphy, Sherali and Soyster (1982) the objective function of (8) is concave. More-
over, Theorem 3 states the Kuhn-Tucker conditions for this problem, which then are
both necessary and su¢ cient for optimality of individual choice. �

Now, denote byMRid(q) �rm i�s marginal revenue at destination d and byMCio(q)
�rm i�s marginal cost at origin c, such that

MRid(q) := Pd(Qd) + P
0
d(Qd)qid � �d and MCio(q) := f 0io(qio) + �o

Then, from the conditions stated in Theorem 3, it follows that in equilibrium each
�rm i which has all �qi > 0; has marginal revenue at each d equal to marginal cost at
each o.

Corollary 1. (Characterization of equilibrium) When �q = (�qi)i2I > 0 is a Cournot-
Nash equilibrium with partial coalitional strategies it holds that

MRid(�q) =MCio(�q) for all o; d for each i 2 I: �

Using the results derived above, the next section provides two related methods for
determining an equilibrium solution to the spatial oligopoly game with cooperative
distribution.
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3.1. Determining an equilibrium solution. In order to �nd individual strate-
gies that satisfy Theorem 3, regard all numbers Qd as constant parameters and con-
sider the problem

max
P
i2I

�P
d2D

�
[Pd(Qd)� �d] qid + 1

2
P 0d(Qd)q

2
id

�
�
P

o2O (fio (qio)� �oqio)
	

subject to
� P

i qid = Qd for all d, and
qi � 0 for all i:

9>=>;
(9)

Murphy, Sherali and Soyster (1982) constructed the above equilibrating problem for
the non-spatial case, i.e., with production and sales taking place within a singleton,
and, also, without joint second-stage transportation activities. The method by which
an algorithm is constructed from this problem is, however, equivalent.
The objective of (9) is concave, the constraints are linear, and, due to P 0d(Qd) < 0

for all d 2 D, the maximization is taken over a compact convex set. Hence an optimal
solution exists. Then consider the Kuhn-Tucker conditions for this problem, where

d and ��i denote the multipliers associated with the constraints of (9) for all d and
i, respectively:

Pd(Qd) + P
0
d(Qd)qid � �d � f 0io(qio) + �o � 
d + �i = 0 for all o; d; for each iP

i qid = Qd; for all d
�iqi = 0 for all i; and
�i; qi � 0 for all i:

9>>=>>;
(10)

These conditions are both necessary and su¢ cient for optimality. The usefulness of
program (9) is now asserted in the following proposition.

Proposition 2. Let Q�d � 0 be such that the optimal solution q� = (q�i )i2I to (9)
satis�es, for some � 2 �(q�); the Kuhn-Tucker conditions above with 
d = 0 for all
d 2 D. Then the pro�le q� = (q�i )i2I is a Cournot-Nash equilibrium with partial
coalitional strategies. Conversely, let �q = (�qi)i2I be an equilibrium solution for some
� 2 �(�q). Then the pro�le �q = (�qi)i2I solves (9) where �Qd =

P
i �qid for all d 2 D.

Moreover, if �Qd > 0; then 
d is necessarily zero.

Proof. If the program (9) yields 
d = 0 with Q�d for all d 2 D; and some
� 2 �(q�); then we can use (10) to verify that the conditions stated in Theorem 3 are
satis�ed with �Qd replaced by Q�d for all d 2 D and �q = (�qi)i2I replaced by q� = (q�i )i2I :
Consequently, q� = (q�i )i2I is an equilibrium solution. From Theorem 3 the solution
qi = �qi for all i, � 2 �(�q), 
d = 0 for all d 2 D; and ui = f 0io(�qio) + �d � Pd( �Qd) �
P 0d(

�Qd)�qid��o satis�es (10) with Qd = �Qd for all d 2 D. Therefore, �q = (�qi)i2I solves
(9) with �Qd for all d 2 D: Moreover, for any equilibrium solution �q = (�qi)i2I � 0
there exists a �rm i for which

Pd( �Qd) + P
0
d( �Qd)�qid � �o = f 0io(�qio) + �d for all o and d:
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Since �q = (�qi)i2I solves (9) with �Qd for all d 2 D, then ui = 0 which, in turn, means
that 
d = 0 for all d 2 D: �

Determining an equilibrium pro�le by this procedure, one has to �nd an optimal
vector � = (�d; �o)d2D;o2O associated with the numbers Qd, for all d 2 D; before
checking whether these particular values Qd yield multipliers 
d equal to zero or not:
Therefore, if any 
d 6= 0 the corresponding Qd must be modi�ed, and, consequently,
the optimal � will also change.
Alternatively, regard all numbers Qd as constant parameters and recall that ship-

ment along the route o ! d induces unit cost cod: Then consider another auxiliary
program

maximize
P
i2I

�P
d2D Pd(Qd)qid +

1
2
P 0d(Qd)q

2
id �

P
o2O fio (qio)

	
� cx

subject to

8>><>>:
P

i qid = Qd for all d;P
d xod � qIo for all o;P
o xod � qId for all d;

and qi; xod � 0 for all i; o; d:

9>>>>>=>>>>>;
(11)

This yields a similar, but more tractable procedure.

Proposition 3. Let Q�d � 0 be such that the optimal solution q� = (q�i )i2I to (11)
yields multipliers 
d = 0 associated with

P
i q
�
id = Q�d for all d 2 D. Then the

pro�le q� = (q�i )i2I is a Cournot-Nash equilibrium with partial coalitional strategies.
Conversely, let �q = (�qi)i2I � 0 be an equilibrium solution. Then the pro�le �q = (�qi)i2I
solves (11) where

P
i �qid =

�Qd for each d; and, moreover, in case �Qd > 0; then 
d = 0
for all d.

Proof. For given numbers qIo and qId; reduce problem (11) by �rst solving the
linear problem in x :

maximize �cx

subject to

8<:
P

d xod � qIo for all o;P
o xod � qId for all d;

and xod � 0 for all o; d:

This problem is equivalent to (3), for which c(qI) is the optimal value function.
Inserting c(qI) for cx in (11), the problem becomes one of maximizing with respect
to q only: Now recall that c(qI) = u(q) and @u(q)=@qi = �(q) 3 � (De�nition 1
and Proposition 1). Thus the Kuhn-Tucker conditions corresponding to the reduced
problem are the same as for program (9). Then invoke Proposition 2. �

In contrast to the previous procedure, one need not compute the optimal � cor-
responding to each adjusted value Qd when searching for those values that yield
multipliers 
d equal to zero. The appropriate � at each adjustment stage will here be
solved for implicitly.
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3.2. A numerical instance. Consider an industry of three �rms which supply
customers at two destinations from one production site each, i.e., i = o; qodi = qid;
and qi = (qid)d2D. The demand functions pd(Qd); d 2 D = f1; 2g ; and production
cost functions fi(qi); i 2 I = f1; 2; 3g ; for this example are

p1 = 5000
1
1:1Q

� 1
1:1

1 ; p2 = 4000
1
1:1Q

� 1
1:1

2 and

f1 = 10q1 + 0:14q
1:8
1 ; f2 = 8q2 + 0:12q

1:9
2 ; f3 = 6q3 + 0:1q

2
3:

The matrix of unit transportation cost coe¢ cients cod is24 1 3
3 2
4 1

35
The equilibrium individual supply levels qi = (qid)d2D, satisfying either (9) and (11),
are then �q1 = (44:909; 38:145); �q2 = (37:552; 31:619); and �q3 = (36:710; 30:872), which
yield equilibrium industry output �Q1 = 119:171 and �Q2 = 100:636 with associated
multipliers 
1 = 0:0004 and 
2 = 0:00005, respectively:
The cost minimizing distribution pattern

firm i: 1 2 3
d = 1 83.05 36.12 0
d = 2 0 33.05 67.58

of the equilibrium production levels
P

d �q1d = 83:05;
P

d �q2d = 69:17; and
P

d �q3d =
67:58, yields joint transportation cost c(�qI) = 325:1 and optimal dual variables �o =
(2; 0; 1) and �d = (3; 2): Splitting c(�qI) in accordance with the core allocation de�ned
in (6), the resulting individual shares of joint transportation costs and individual
(overall) pro�ts are

firm i: 1 2 3
ui 44.92 175.89 104.29
��i 1151.9 915.9 1008.1

Exchanging the concerted transportation problem in (11) for the individual trans-
portation problems in autarky, we can compute the standard spatial Cournot-Nash
equilibrium for the speci�cations given above. Optimal supply levels q̂i = (q̂id)d2D are
then q̂1 = (47:535; 30:016); q̂2 = (37:851; 32:532); and q̂3 = (31:231; 34:069); which
yield equilibrium industry output Q̂1 = 116:616 and Q̂2 = 96:616: Total output thus
decreases if �rms ship their own supply. The corresponding individual transportation
costs cx̂i and overall individual pro�ts in this case are

firm i: 1 2 3
cx̂i 137.58 178.62 158.99
�̂i 1007.8 925.7 924.6

As we can see, �rms 1 and 3 increase their pro�ts under cooperative distribution,
whereas �rm 2 is better o¤ in the non-cooperative case.
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4. Conclusion
The object of this paper was to analyze a spatial Cournot industry where the sub-
sequent distribution of goods to consumers was arranged via the grand coalition,
implying a two-stage game with both non-cooperative and cooperative strategies. An
equilibrium for the overall game was established and characterized, and methods for
determining an equilibrium solution provided. Furthermore, a numerical illustration
highlights an interesting consequence of joint distribution in this context: Although
transportation activities were competitive already at the outset (in autarky), i.e., by
means of being exogenously priced, agreeing to distribute goods jointly increases total
industry output � and, consequently, lowers the market price for the good. For au-
thorities eager to increase welfare by introducing competition in network economies,
it may be worth noting that appropriately designed regulation schemes may improve
welfare beyond the scope of the invisible hand.
An alternative approach could be to analyze the overall game as a cooperative

game, as did Sherali and Rajan (1986) for the oligopolistic (one-stage), non-spatial
case. Then core solutions are not guaranteed. Moreover, the game would neither be
one of orthogonal coalitions. Consequently, one should seek solutions in the � or �-
core (see Shubik 1982). Anyway, when the parameters of demand and cost functions
are such that overall individual pro�t increases, one would expect that �rms have
incentives to establish the grand coalition. Under which conditions this will happen
is left for a subsequent paper.
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